Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Transl Pediatr ; 13(4): 697-703, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38715674

ABSTRACT

Background: A microbiological cause of infection is infrequently identified in critically unwell children with a respiratory infection. Molecular diagnostic arrays provide an alternative. These tests are becoming more broadly available, but little is known about how clinicians interpret the results to impact clinical decision making. Case Description: Here we describe three cases of bacterial and fungal lower respiratory tract infection (LRTI) diagnosed in the paediatric intensive care unit (PICU) using a custom 52 respiratory pathogen TaqMan array card (TAC). Firstly, an early diagnosis of Candida albicans pneumonia was made with the support of the TAC in a trauma patient who received prolonged mechanical ventilation. The pathogen was only identified on microbiological cultures after further clinical deterioration had occurred. Secondly, a rare case of psittacosis was identified in an adolescent with acute respiratory distress, initially suspected to have multisystem inflammatory syndrome in children (MIS-C). Finally, Haemophilus influenzae pneumonia was identified in an infant with recurrent apnoeas, initially treated for meningitis. Two diagnoses would not have been established using commercially available arrays, and pathogen-specific diagnoses were established faster than that of routine microbiological culture. Conclusions: The pathogens included on molecular arrays and interpretation by a multidisciplinary team are crucial in providing value to PICU diagnostic services. Molecular arrays have the potential to enhance early pathogen-specific diagnosis of LRTI in the PICU.

2.
Microb Genom ; 10(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38630616

ABSTRACT

Genomic epidemiology enhances the ability to detect and refute methicillin-resistant Staphylococcus aureus (MRSA) outbreaks in healthcare settings, but its routine introduction requires further evidence of benefits for patients and resource utilization. We performed a 12 month prospective study at Cambridge University Hospitals NHS Foundation Trust in the UK to capture its impact on hospital infection prevention and control (IPC) decisions. MRSA-positive samples were identified via the hospital microbiology laboratory between November 2018 and November 2019. We included samples from in-patients, clinic out-patients, people reviewed in the Emergency Department and healthcare workers screened by Occupational Health. We sequenced the first MRSA isolate from 823 consecutive individuals, defined their pairwise genetic relatedness, and sought epidemiological links in the hospital and community. Genomic analysis of 823 MRSA isolates identified 72 genetic clusters of two or more isolates containing 339/823 (41 %) of the cases. Epidemiological links were identified between two or more cases for 190 (23 %) individuals in 34/72 clusters. Weekly genomic epidemiology updates were shared with the IPC team, culminating in 49 face-to-face meetings and 21 written communications. Seventeen clusters were identified that were consistent with hospital MRSA transmission, discussion of which led to additional IPC actions in 14 of these. Two outbreaks were also identified where transmission had occurred in the community prior to hospital presentation; these were escalated to relevant IPC teams. We identified 38 instances where two or more in-patients shared a ward location on overlapping dates but carried unrelated MRSA isolates (pseudo-outbreaks); research data led to de-escalation of investigations in six of these. Our findings provide further support for the routine use of genomic epidemiology to enhance and target IPC resources.


Subject(s)
Cross Infection , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Cross Infection/microbiology , Staphylococcal Infections/microbiology , Prospective Studies , Genomics
3.
Health Technol Assess ; 28(8): 1-84, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38421007

ABSTRACT

Background: Healthcare-associated infections are a major cause of morbidity and mortality in critically ill children. In adults, data suggest the use of selective decontamination of the digestive tract may reduce the incidence of healthcare-associated infections. Selective decontamination of the digestive tract has not been evaluated in the paediatric intensive care unit population. Objectives: To determine the feasibility of conducting a multicentre, cluster-randomised controlled trial in critically ill children comparing selective decontamination of the digestive tract with standard infection control. Design: Parallel-group pilot cluster-randomised controlled trial with an integrated mixed-methods study. Setting: Six paediatric intensive care units in England. Participants: Children (> 37 weeks corrected gestational age, up to 16 years) requiring mechanical ventilation expected to last for at least 48 hours were eligible for the PICnIC pilot cluster-randomised controlled trial. During the ecology periods, all children admitted to the paediatric intensive care units were eligible. Parents/legal guardians of recruited patients and healthcare professionals working in paediatric intensive care units were eligible for inclusion in the mixed-methods study. Interventions: The interventions in the PICnIC pilot cluster-randomised controlled trial included administration of selective decontamination of the digestive tract as oro-pharyngeal paste and as a suspension given by enteric tube during the period of mechanical ventilation. Main outcome measures: The decision as to whether a definitive cluster-randomised controlled trial is feasible is based on multiple outcomes, including (but not limited to): (1) willingness and ability to recruit eligible patients; (2) adherence to the selective decontamination of the digestive tract intervention; (3) acceptability of the definitive cluster-randomised controlled trial; (4) estimation of recruitment rate; and (5) understanding of potential clinical and ecological outcome measures. Results: A total of 368 children (85% of all those who were eligible) were enrolled in the PICnIC pilot cluster-randomised controlled trial across six paediatric intensive care units: 207 in the baseline phase (Period One) and 161 in the intervention period (Period Two). In sites delivering selective decontamination of the digestive tract, the majority (98%) of children received at least one dose of selective decontamination of the digestive tract, and of these, 68% commenced within the first 6 hours. Consent for the collection of additional swabs was low (44%), though data completeness for potential outcomes, including microbiology data from routine clinical swab testing, was excellent. Recruited children were representative of the wider paediatric intensive care unit population. Overall, 3.6 children/site/week were recruited compared with the potential recruitment rate for a definitive cluster-randomised controlled trial of 3 children/site/week, based on data from all UK paediatric intensive care units. The proposed trial, including consent and selective decontamination of the digestive tract, was acceptable to parents and staff with adaptations, including training to improve consent and communication, and adaptations to the administration protocol for the paste and ecology monitoring. Clinical outcomes that were considered important included duration of organ failure and hospital stay, healthcare-acquired infections and survival. Limitations: The delivery of the pilot cluster-randomised controlled trial was disrupted by the COVID-19 pandemic, which led to slow set-up of sites, and a lack of face-to face training. Conclusions: PICnIC's findings indicate that a definitive cluster-randomised controlled trial in selective decontamination of the digestive tract in paediatric intensive care units is feasible with the inclusion modifications, which would need to be included in a definitive cluster-randomised controlled trial to ensure that the efficiency of trial processes is maximised. Future work: A definitive trial that incorporates the protocol adaptations and outcomes arising from this study is feasible and should be conducted. Trial registration: This trial is registered as ISRCTN40310490. Funding: This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: 16/152/01) and is published in full in Health Technology Assessment; Vol. 28, No. 8. See the NIHR Funding and Awards website for further award information.


Each year, around 20,000 critically ill children are admitted to paediatric intensive care units in the UK. These children are at a higher risk of healthcare-associated infections, one of the main sources of which is the large number of bacteria in the digestive tract. Spread of bacteria from the digestive tract into other organs, such as the lung (causing ventilator-associated pneumonia) or bloodstream (causing sepsis), can be life-threatening. The risk is highest in those children whose illness is so severe that they require prolonged mechanical ventilation. Stopping the growth of bacteria in the digestive tract (called selective decontamination of the digestive tract) has been shown in adults to reduce the number of hospital-acquired infections. However, there have been no trials in children. We wanted to assess how practical and acceptable such a trial would be comparing standard infection control to selective decontamination of the digestive tract-enhanced infection control and monitoring how each intervention affected antimicrobial resistance. We undertook a pilot study to examine whether clinicians could identify eligible children, enrol them in the study and follow study procedures during the course of paediatric intensive care unit admission. Alongside this, we interviewed parents and clinicians to get their views on the proposed trial. Six hospitals recruited 559 patients over a period of roughly 7 months. Hospitals were randomly allocated to continue with the standard infection control procedure or to give selective decontamination of the digestive tract. Overall, recruitment was higher than expected. Alongside this, we examined the views of patients, caregivers and healthcare professionals to assess their views on whether a trial should be carried out to see if selective decontamination of the digestive tract should become part of the infection control regime for children most at risk of hospital-acquired infection in the paediatric intensive care unit. Overall results suggest that a larger PICnIC trial incorporating patient stakeholder and clinical staff feedback on design and outcomes is feasible and that it is appropriate to conduct a trial into the effectiveness of selective decontamination of the digestive tract administration to minimise hospital-acquired infections.


Subject(s)
Cross Infection , Decontamination , Adult , Child , Humans , Critical Illness/therapy , Pandemics , England
4.
JAC Antimicrob Resist ; 6(1): dlae022, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38372001

ABSTRACT

Objectives: Studies in the USA, Canada and France have reported higher surgical site infection (SSI) risk in patients with a penicillin allergy label (PAL). Here, we investigate the association between PALs and SSI in the UK, a country with distinct epidemiology of infecting pathogens and range of antimicrobial regimens in routine use. Methods: Electronic health records and national SSI surveillance data were collated for a retrospective cohort of gastrointestinal surgery patients at Cambridge University Hospitals NHS Foundation Trust from 1 January 2015 to 31 December 2021. Univariable and multivariable logistic regression were used to examine the effects of PALs and the use of non-ß-lactam-based prophylaxis on likelihood of SSI, 30 day post-operative mortality, 7 day post-operative acute kidney injury and 60 day post-operative infection/colonization with antimicrobial-resistant bacteria or Clostridioides difficile. Results: Our data comprised 3644 patients and 4085 operations; 461 were undertaken in the presence of PALs (11.3%). SSI was detected after 435/4085 (10.7%) operations. Neither the presence of PALs, nor the use of non-ß-lactam-based prophylaxis were found to be associated with SSI: adjusted OR (aOR) 0.90 (95% CI 0.65-1.25) and 1.20 (0.88-1.62), respectively. PALs were independently associated with increased odds of newly identified MRSA infection/colonization in the 60 days after surgery: aOR 2.71 (95% CI 1.13-6.49). Negative association was observed for newly identified infection/colonization with third-generation cephalosporin-resistant Gram-negative bacteria: aOR 0.38 (95% CI 0.16-0.89). Conclusions: No evidence was found for an association between PALs and the likelihood of SSI in this large UK cohort, suggesting significant international variation in the impact of PALs on surgical patients.

5.
Lancet Microbe ; 5(2): e151-e163, 2024 02.
Article in English | MEDLINE | ID: mdl-38219758

ABSTRACT

BACKGROUND: DNA sequencing could become an alternative to in vitro antibiotic susceptibility testing (AST) methods for determining antibiotic resistance by detecting genetic determinants associated with decreased antibiotic susceptibility. Here, we aimed to assess and improve the accuracy of antibiotic resistance determination from Enterococcus faecium genomes for diagnosis and surveillance purposes. METHODS: In this retrospective diagnostic accuracy study, we first conducted a literature search in PubMed on Jan 14, 2021, to compile a catalogue of genes and mutations predictive of antibiotic resistance in E faecium. We then evaluated the diagnostic accuracy of this database to determine susceptibility to 12 different, clinically relevant antibiotics using a diverse population of 4382 E faecium isolates with available whole-genome sequences and in vitro culture-based AST phenotypes. Isolates were obtained from various sources in 11 countries worldwide between 2000 and 2018. We included isolates tested with broth microdilution, Vitek 2, and disc diffusion, and antibiotics with at least 50 susceptible and 50 resistant isolates. Phenotypic resistance was derived from raw minimum inhibitory concentrations and measured inhibition diameters, and harmonised primarily using the breakpoints set by the European Committee on Antimicrobial Susceptibility Testing. A bioinformatics pipeline was developed to process raw sequencing reads, identify antibiotic resistance genetic determinants, and report genotypic resistance. We used our curated database, as well as ResFinder, AMRFinderPlus, and LRE-Finder, to assess the accuracy of genotypic predictions against phenotypic resistance. FINDINGS: We curated a catalogue of 228 genetic markers involved in resistance to 12 antibiotics in E faecium. Very accurate genotypic predictions were obtained for ampicillin (sensitivity 99·7% [95% CI 99·5-99·9] and specificity 97·9% [95·8-99·0]), ciprofloxacin (98·0% [96·4-98·9] and 98·8% [95·9-99·7]), vancomycin (98·8% [98·3-99·2] and 98·8% [98·0-99·3]), and linezolid resistance (after re-testing false negatives: 100·0% [90·8-100·0] and 98·3% [97·8-98·7]). High sensitivity was obtained for tetracycline (99·5% [99·1-99·7]), teicoplanin (98·9% [98·4-99·3]), and high-level resistance to aminoglycosides (97·7% [96·6-98·4] for streptomycin and 96·8% [95·8-97·5] for gentamicin), although at lower specificity (60-90%). Sensitivity was expectedly low for daptomycin (73·6% [65·1-80·6]) and tigecycline (38·3% [27·1-51·0]), for which the genetic basis of resistance is not fully characterised. Compared with other antibiotic resistance databases and bioinformatic tools, our curated database was similarly accurate at detecting resistance to ciprofloxacin and linezolid and high-level resistance to streptomycin and gentamicin, but had better sensitivity for detecting resistance to ampicillin, tigecycline, daptomycin, and quinupristin-dalfopristin, and better specificity for ampicillin, vancomycin, teicoplanin, and tetracycline resistance. In a validation dataset of 382 isolates, similar or improved diagnostic accuracies were also achieved. INTERPRETATION: To our knowledge, this work represents the largest published evaluation to date of the accuracy of antibiotic susceptibility predictions from E faecium genomes. The results and resources will facilitate the adoption of whole-genome sequencing as a tool for the diagnosis and surveillance of antimicrobial resistance in E faecium. A complete characterisation of the genetic basis of resistance to last-line antibiotics, and the mechanisms mediating antibiotic resistance silencing, are needed to close the remaining sensitivity and specificity gaps in genotypic predictions. FUNDING: Wellcome Trust, UK Department of Health, British Society for Antimicrobial Chemotherapy, Academy of Medical Sciences and the Health Foundation, Medical Research Council Newton Fund, Vietnamese Ministry of Science and Technology, and European Society of Clinical Microbiology and Infectious Disease.


Subject(s)
Daptomycin , Enterococcus faecium , Enterococcus faecium/genetics , Vancomycin/pharmacology , Linezolid , Tigecycline , Teicoplanin , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Ampicillin/pharmacology , Drug Resistance, Microbial , Ciprofloxacin , Phenotype , Gentamicins , Streptomycin
6.
Gut ; 73(6): 910-921, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38253478

ABSTRACT

OBJECTIVE: Selective decontamination of the digestive tract (SDD) is a well-studied but hotly contested medical intervention of enhanced infection control. Here, we aim to characterise the changes to the microbiome and antimicrobial resistance (AMR) gene profiles in critically ill children treated with SDD-enhanced infection control compared with conventional infection control. DESIGN: We conducted shotgun metagenomic microbiome and resistome analysis on serial oropharyngeal and faecal samples collected from critically ill, mechanically ventilated patients in a pilot multicentre cluster randomised trial of SDD. The microbiome and AMR profiles were compared for longitudinal and intergroup changes. Of consented patients, faecal microbiome baseline samples were obtained in 89 critically ill children. Additionally, samples collected during and after critical illness were collected in 17 children treated with SDD-enhanced infection control and 19 children who received standard care. RESULTS: SDD affected the alpha and beta diversity of critically ill children to a greater degree than standard care. At cessation of treatment, the microbiome of SDD patients was dominated by Actinomycetota, specifically Bifidobacterium, at the end of mechanical ventilation. Altered gut microbiota was evident in a subset of SDD-treated children who returned late longitudinal samples compared with children receiving standard care. Clinically relevant AMR gene burden was unaffected by the administration of SDD-enhanced infection control compared with standard care. SDD did not affect the composition of the oral microbiome compared with standard treatment. CONCLUSION: Short interventions of SDD caused a shift in the microbiome but not of the AMR gene pool in critically ill children at the end mechanical ventilation, compared with standard antimicrobial therapy.


Subject(s)
Critical Illness , Decontamination , Feces , Humans , Pilot Projects , Critical Illness/therapy , Male , Female , Child, Preschool , Feces/microbiology , Decontamination/methods , Child , Gastrointestinal Microbiome/drug effects , Infection Control/methods , Respiration, Artificial , Infant , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Drug Resistance, Bacterial/genetics , Gastrointestinal Tract/microbiology , Oropharynx/microbiology
7.
Sci Rep ; 13(1): 21668, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38066012

ABSTRACT

Healthcare-associated infections (HCAIs) are a major cause of morbidity and mortality in critically ill children. Data from adult studies suggest Selective Decontamination of the Digestive tract (SDD) may reduce the incidence of HCAIs and improve survival. There are no data from randomised clinical trials in the paediatric setting. An open label, parallel group pilot cRCT and mixed-methods perspectives study was conducted in six paediatric intensive care units (PICUs) in England. Participants were children (> 37 weeks corrected gestational age, up to 16 years) requiring mechanical ventilation expected to last for at least 48 h. Sites undertook standard care for a period of 9 weeks and were randomised into 3 sites which continued standard care and 3 where SDD was incorporated into infection control practice for eligible children. Interviews and focus groups were conducted for parents and staff working in PICU. 434 children fulfilled eligibility criteria, of whom 368 (85%) were enrolled. This included 207 in the baseline phase (Period One) and 161 in the intervention period (Period Two). In sites delivering SDD, the majority (98%) of children received at least one dose of SDD and of these, 68% commenced within the first 6 h. Whilst admission swabs were collected in 91% of enrolled children, consent for the collection of additional swabs was low (44%). Recruited children were representative of the wider PICU population. Overall, 3.6 children/site/week were recruited compared with the potential recruitment rate for a definitive cRCT of 3 children/site/week, based on data from all UK PICUs. Parents (n = 65) and staff (n = 44) were supportive of the aims of the study, suggesting adaptations for a larger definitive trial including formulation and administration of SDD paste, approaches to consent and ecology monitoring. Stakeholders identified preferred clinical outcomes, focusing on complications of critical illness and quality-of-life. A definitive cRCT in SDD to prevent HCAIs in critically ill children is feasible but should include adaptations to ecology monitoring along with the dosing schedule and packaging into a paediatric specific format. A definitive study is supported by the findings with adaptations to ecology monitoring and SDD administration.Trial Registration: ISRCTN40310490 Registered 30/10/2020.


Subject(s)
Cross Infection , Decontamination , Adult , Humans , Child , Decontamination/methods , Critical Illness/therapy , Pilot Projects , Gastrointestinal Tract , Cross Infection/epidemiology
8.
Antibiotics (Basel) ; 12(12)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38136735

ABSTRACT

Bacteria are identified in only 22% of critically ill children with respiratory infections treated with antimicrobial therapy. Once an organism is isolated, antimicrobial susceptibility results (phenotypic testing) can take another day. A rapid diagnostic test identifying antimicrobial resistance (AMR) genes could help clinicians make earlier, informed antimicrobial decisions. Here we aimed to validate a custom AMR gene TaqMan Array Card (AMR-TAC) for the first time and assess its feasibility as a screening tool in critically ill children. An AMR-TAC was developed using a combination of commercial and bespoke targets capable of detecting 23 AMR genes. This was validated using isolates with known phenotypic resistance. The card was then tested on lower respiratory tract and faecal samples obtained from mechanically ventilated children in a single-centre observational study of respiratory infection. There were 82 children with samples available, with a median age of 1.2 years. Major comorbidity was present in 29 (35%) children. A bacterial respiratory pathogen was identified in 13/82 (16%) of children, of which 4/13 (31%) had phenotypic AMR. One AMR gene was detected in 49/82 (60%), and multiple AMR genes were detected in 14/82 (17%) children. Most AMR gene detections were not associated with the identification of phenotypic AMR. AMR genes are commonly detected in samples collected from mechanically ventilated children with suspected respiratory infections. AMR-TAC may have a role as an adjunct test in selected children in whom there is a high suspicion of antimicrobial treatment failure.

9.
Microb Genom ; 9(10)2023 10.
Article in English | MEDLINE | ID: mdl-37902454

ABSTRACT

Escherichia coli is a ubiquitous component of the human gut microbiome, but is also a common pathogen, causing around 40, 000 bloodstream infections (BSI) in the United Kingdom (UK) annually. The number of E. coli BSI has increased over the last decade in the UK, and emerging antimicrobial resistance (AMR) profiles threaten treatment options. Here, we combined clinical, epidemiological, and whole genome sequencing data with high content imaging to characterise over 300 E. coli isolates associated with BSI in a large teaching hospital in the East of England. Overall, only a limited number of sequence types (ST) were responsible for the majority of organisms causing invasive disease. The most abundant (20 % of all isolates) was ST131, of which around 90 % comprised the pandemic O25b:H4 group. ST131-O25b:H4 isolates were frequently multi-drug resistant (MDR), with a high prevalence of extended spectrum ß-lactamases (ESBL) and fluoroquinolone resistance. There was no association between AMR phenotypes and the source of E. coli bacteraemia or whether the infection was healthcare-associated. Several clusters of ST131 were genetically similar, potentially suggesting a shared transmission network. However, there was no clear epidemiological associations between these cases, and they included organisms from both healthcare-associated and non-healthcare-associated origins. The majority of ST131 isolates exhibited strong binding with an anti-O25b antibody, raising the possibility of developing rapid diagnostics targeting this pathogen. In summary, our data suggest that a restricted set of MDR E. coli populations can be maintained and spread across both community and healthcare settings in this location, contributing disproportionately to invasive disease and AMR.


Subject(s)
Escherichia coli Infections , Sepsis , Humans , Escherichia coli/genetics , Hospitals, Teaching , United Kingdom/epidemiology , England , Escherichia coli Infections/epidemiology , Genomics
10.
Microb Genom ; 9(7)2023 07.
Article in English | MEDLINE | ID: mdl-37405394

ABSTRACT

Healthcare-associated infections (HCAIs) affect the most vulnerable people in society and are increasingly difficult to treat in the face of mounting antimicrobial resistance (AMR). Routine surveillance represents an effective way of understanding the circulation and burden of bacterial resistance and transmission in hospital settings. Here, we used whole-genome sequencing (WGS) to retrospectively analyse carbapenemase-producing Gram-negative bacteria from a single hospital in the UK over 6 years (n=165). We found that the vast majority of isolates were either hospital-onset (HAI) or HCAI. Most carbapenemase-producing organisms were carriage isolates, with 71 % isolated from screening (rectal) swabs. Using WGS, we identified 15 species, the most common being Escherichia coli and Klebsiella pneumoniae. Only one significant clonal outbreak occurred during the study period and involved a sequence type (ST)78 K. pneumoniae carrying bla NDM-1 on an IncFIB/IncHI1B plasmid. Contextualization with public data revealed little evidence of this ST outside of the study hospital, warranting ongoing surveillance. Carbapenemase genes were found on plasmids in 86 % of isolates, the most common types being bla NDM- and bla OXA-type alleles. Using long-read sequencing, we determined that approximately 30 % of isolates with carbapenemase genes on plasmids had acquired them via horizontal transmission. Overall, a national framework to collate more contextual genomic data, particularly for plasmids and resistant bacteria in the community, is needed to better understand how carbapenemase genes are transmitted in the UK.


Subject(s)
Hospitals , Klebsiella pneumoniae , Humans , Retrospective Studies , Plasmids/genetics , Klebsiella pneumoniae/genetics , Escherichia coli/genetics , Genomics , United Kingdom/epidemiology
11.
Emerg Infect Dis ; 29(8): 1684-1687, 2023 08.
Article in English | MEDLINE | ID: mdl-37486350

ABSTRACT

We report a novel Globicatella species causing extensive soft tissue infection in a man bitten by a stray domestic cat in the United Kingdom. We identified this bacterium by 16S rRNA gene sequencing, whole-genome sequencing, and biochemical profiling and determined antimicrobial drug susceptibility.


Subject(s)
Aerococcaceae , Gram-Positive Bacterial Infections , Soft Tissue Infections , Animals , Cats , Gram-Positive Bacterial Infections/microbiology , RNA, Ribosomal, 16S/genetics , Soft Tissue Infections/diagnosis , Soft Tissue Infections/drug therapy , Aerococcaceae/genetics , Bacteria/genetics
12.
J Allergy Clin Immunol Pract ; 11(7): 2180-2189.e4, 2023 07.
Article in English | MEDLINE | ID: mdl-37088372

ABSTRACT

BACKGROUND: Antibiotic allergy labels are important barriers to treatment and antimicrobial stewardship, but their prevalence in UK hospitals is poorly described. OBJECTIVE: To ascertain the prevalence and characteristics of antibiotic allergy labels in a large UK hospital setting and estimate the proportion of penicillin allergy labels for which point-of-care (POC) delabeling assessment would be appropriate. METHODS: Electronic health records data were analyzed from all patients treated at Cambridge University Hospitals NHS Foundation Trust in 2019. Validated POC delabeling risk stratification criteria were retrospectively applied to penicillin allergy labels. RESULTS: Recorded reactions to antibiotics were present in 11.8% of all patients (32,148 of 273,216), 16.3% of inpatients (13,874 of 85,230), and 9.7% of outpatients (18,274 of 187,986). Penicillins were the commonest reaction precipitant described (9.0% of patients; 24,646 of 273,216), followed by sulfonamides/trimethoprim (1.4%; 3869 of 273,216) and macrolides/lincosamides (1.3%; 3644 of 273,216). A total of 3.9% of inpatients had recorded reactions to >1 antibiotic class (3348 of 85,230). Cutaneous manifestations were the most commonly described reaction features (40.7% of labels; 15,821 of 38,902). Of 15,949 labels describing probable or possible penicillin "allergy" with sufficient detail to allow for the retrospective assessment of POC delabeling suitability, 1702 were deemed suitable for removal or downgrading of the label to "intolerance" without further investigation (10.7%), 11,887 were appropriate for POC assessment using an oral penicillin challenge (OPC) or OPC with prior bedside skin testing (74.5%), and 2360 were identified as unsuitable for any form of POC assessment (14.8%). CONCLUSIONS: Antibiotic allergy labels are highly prevalent in a UK hospital setting. A large proportion of penicillin allergy labels may be suitable for POC delabeling assessment.


Subject(s)
Antimicrobial Stewardship , Drug Hypersensitivity , Humans , Retrospective Studies , Drug Hypersensitivity/diagnosis , Drug Hypersensitivity/epidemiology , Anti-Bacterial Agents/adverse effects , Penicillins/adverse effects , Hospitals , United Kingdom/epidemiology
13.
Crit Care ; 27(1): 11, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627688

ABSTRACT

PURPOSE: Respiratory infections are the most common reason for admission to paediatric intensive care units (PICU). Most patients with lower respiratory tract infection (LRTI) receive broad-spectrum antimicrobials, despite low rates of bacterial culture confirmation. Here, we evaluated a molecular diagnostic test for LRTI to inform the better use of antimicrobials. METHODS: The Rapid Assay for Sick Children with Acute Lung infection Study was a single-centre, prospective, observational cohort study of mechanically ventilated children (> 37/40 weeks corrected gestation to 18 years) with suspected community acquired or ventilator-associated LRTI. We evaluated the use of a 52-pathogen custom TaqMan Array Card (TAC) to identify pathogens in non-bronchoscopic bronchoalveolar lavage (mini-BAL) samples. TAC results were compared to routine microbiology testing. Primary study outcomes were sensitivity and specificity of TAC, and time to result. RESULTS: We enrolled 100 patients, all of whom were tested with TAC and 91 of whom had matching culture samples. TAC had a sensitivity of 89.5% (95% confidence interval (CI95) 66.9-98.7) and specificity of 97.9% (CI95 97.2-98.5) compared to routine bacterial and fungal culture. TAC took a median 25.8 h (IQR 9.1-29.8 h) from sample collection to result. Culture was significantly slower: median 110.4 h (IQR 85.2-141.6 h) for a positive result and median 69.4 h (IQR 52.8-78.6) for a negative result. CONCLUSIONS: TAC is a reliable and rapid adjunct diagnostic approach for LRTI in critically ill children, with the potential to aid early rationalisation of antimicrobial therapy.


Subject(s)
Pneumonia , Respiratory Tract Infections , Humans , Child , Prospective Studies , Critical Illness , Pneumonia/diagnosis , Respiratory Tract Infections/diagnosis , Bacteria , Bronchoalveolar Lavage Fluid/microbiology
14.
Microb Genom ; 8(9)2022 09.
Article in English | MEDLINE | ID: mdl-36129737

ABSTRACT

Enterococcus faecium is a ubiquitous opportunistic pathogen that is exhibiting increasing levels of antimicrobial resistance (AMR). Many of the genes that confer resistance and pathogenic functions are localized on mobile genetic elements (MGEs), which facilitate their transfer between lineages. Here, features including resistance determinants, virulence factors and MGEs were profiled in a set of 1273 E. faecium genomes from two disparate geographic locations (in the UK and Canada) from a range of agricultural, clinical and associated habitats. Neither lineages of E. faecium, type A and B, nor MGEs are constrained by geographic proximity, but our results show evidence of a strong association of many profiled genes and MGEs with habitat. Many features were associated with a group of clinical and municipal wastewater genomes that are likely forming a new human-associated ecotype within type A. The evolutionary dynamics of E. faecium make it a highly versatile emerging pathogen, and its ability to acquire, transmit and lose features presents a high risk for the emergence of new pathogenic variants and novel resistance combinations. This study provides a workflow for MGE-centric surveillance of AMR in Enterococcus that can be adapted to other pathogens.


Subject(s)
Anti-Infective Agents , Enterococcus faecium , One Health , Enterococcus faecium/genetics , Humans , Virulence Factors/genetics , Wastewater
15.
J Infect Prev ; 23(5): 197-205, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36003131

ABSTRACT

Background: Healthcare-associated (HCA) SARS-CoV-2 infection is a significant contributor to the spread of the 2020 pandemic. Timely review of HCA cases is essential to identify learning to inform infection prevention and control (IPC) policies and organisational response. Aim: To identify key areas for improvement through rapid investigation of HCA SARS-CoV-2 cases and to implement change. Methods: Cases were identified based on date of first positive SARS-CoV-2 PCR sample in relation to date of hospital admission. Cases were reviewed using a structured gap analysis tool to identify key learning points. These were discussed in weekly multidisciplinary meetings to gain consensus on learning outcomes, level of harm incurred by the patient and required actions. Learning was then promptly fed back to individual teams and the organisation. Findings: Of the 489 SARS-CoV-2 cases admitted between 10th March and 23rd June 2020, 114 suspected HCA cases (23.3%) were reviewed; 58/489 (11.8%) were ultimately deemed to be HCA. Five themes were identified: individual patient vulnerability, communication, IPC implementation, policy issues and organisational response. Adaptations to policies based on these reviews were completed within the course of the initial phase of the pandemic. Conclusion: This approach enabled timely learning and implementation of control measures and policy development.

17.
Clin Microbiol Rev ; 35(3): e0017921, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35612324

ABSTRACT

Antimicrobial resistance (AMR) is a global health crisis that poses a great threat to modern medicine. Effective prevention strategies are urgently required to slow the emergence and further dissemination of AMR. Given the availability of data sets encompassing hundreds or thousands of pathogen genomes, machine learning (ML) is increasingly being used to predict resistance to different antibiotics in pathogens based on gene content and genome composition. A key objective of this work is to advocate for the incorporation of ML into front-line settings but also highlight the further refinements that are necessary to safely and confidently incorporate these methods. The question of what to predict is not trivial given the existence of different quantitative and qualitative laboratory measures of AMR. ML models typically treat genes as independent predictors, with no consideration of structural and functional linkages; they also may not be accurate when new mutational variants of known AMR genes emerge. Finally, to have the technology trusted by end users in public health settings, ML models need to be transparent and explainable to ensure that the basis for prediction is clear. We strongly advocate that the next set of AMR-ML studies should focus on the refinement of these limitations to be able to bridge the gap to diagnostic implementation.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Machine Learning
18.
Commun Biol ; 5(1): 266, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338232

ABSTRACT

Genome-wide association studies (GWAS) are increasingly being applied to investigate the genetic basis of bacterial traits. However, approaches to perform power calculations for bacterial GWAS are limited. Here we implemented two alternative approaches to conduct power calculations using existing collections of bacterial genomes. First, a sub-sampling approach was undertaken to reduce the allele frequency and effect size of a known and detectable genotype-phenotype relationship by modifying phenotype labels. Second, a phenotype-simulation approach was conducted to simulate phenotypes from existing genetic variants. We implemented both approaches into a computational pipeline (PowerBacGWAS) that supports power calculations for burden testing, pan-genome and variant GWAS; and applied it to collections of Enterococcus faecium, Klebsiella pneumoniae and Mycobacterium tuberculosis. We used this pipeline to determine sample sizes required to detect causal variants of different minor allele frequencies (MAF), effect sizes and phenotype heritability, and studied the effect of homoplasy and population diversity on the power to detect causal variants. Our pipeline and user documentation are made available and can be applied to other bacterial populations. PowerBacGWAS can be used to determine sample sizes required to find statistically significant associations, or the associations detectable with a given sample size. We recommend to perform power calculations using existing genomes of the bacterial species and population of study.


Subject(s)
Genome, Bacterial , Genome-Wide Association Study , Computer Simulation , Phenotype , Sample Size
19.
BMJ Open ; 12(3): e061838, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35277414

ABSTRACT

INTRODUCTION: Healthcare-associated infections (HCAIs) are a major cause of morbidity and mortality in critically ill children. In critically ill adults, there are data that suggest the use of Selective Decontamination of the Digestive tract (SDD), alongside standard infection control measures reduce mortality and the incidence of HCAIs. SDD-enhanced infection control has not been compared directly with standard infection prevention strategies in the Paediatric Intensive Care Unit (PICU) population. The aim of this pilot study is to determine the feasibility of conducting a multicentre cluster randomised controlled trial (cRCT) in critically ill children comparing SDD with standard infection control. METHODS AND ANALYSIS: Paediatric Intensive Care and Infection Control is a parallel group pilot cRCT, with integrated mixed-methods study, comparing incorporation of SDD into infection control procedures to standard care. After a 1-week pretrial ecology surveillance period, recruitment to the cRCT will run for a period of 18 weeks, comprising: (1) baseline control period (2) pre, mid and post-trial ecology surveillance periods and (3) intervention period. Six PICUs (in England, UK) will begin with usual care in period 1, then will be randomised 1:1 by the trial statistician using computer-based randomisation, to either continue to deliver usual care or commence delivery of the intervention (SDD) in period 2. Outcomes measures include parent and healthcare professionals' views on trial feasibility, adherence to the SDD intervention, estimation of recruitment rate and understanding of potential patient-centred primary and secondary outcome measures for the definitive trial. The planned recruitment for the cRCT is 324 participants. ETHICS AND DISSEMINATION: The trial received favourable ethical opinion from West Midlands-Black Country Research Ethics Committee (reference: 20/WM/0061) and approval from the Health Research Authority (IRAS number: 239324). Informed consent is not required for SDD intervention or anonymised data collection but is sought for investigations as part of the study, any identifiable data collected and monitoring of medical records. Results will be disseminated via publications in peer-reviewed medical journals. TRIAL REGISTRATION NUMBER: ISRCTN40310490.


Subject(s)
Critical Illness , Cross Infection , Adult , Child , Critical Care , Critical Illness/therapy , Cross Infection/prevention & control , Decontamination , Humans , Infection Control , Multicenter Studies as Topic , Pilot Projects , Randomized Controlled Trials as Topic
20.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35106603

ABSTRACT

Identifying linked cases of infection is a critical component of the public health response to viral infectious diseases. In a clinical context, there is a need to make rapid assessments of whether cases of infection have arrived independently onto a ward, or are potentially linked via direct transmission. Viral genome sequence data are of great value in making these assessments, but are often not the only form of data available. Here, we describe A2B-COVID, a method for the rapid identification of potentially linked cases of COVID-19 infection designed for clinical settings. Our method combines knowledge about infection dynamics, data describing the movements of individuals, and evolutionary analysis of genome sequences to assess whether data collected from cases of infection are consistent or inconsistent with linkage via direct transmission. A retrospective analysis of data from two wards at Cambridge University Hospitals NHS Foundation Trust during the first wave of the pandemic showed qualitatively different patterns of linkage between cases on designated COVID-19 and non-COVID-19 wards. The subsequent real-time application of our method to data from the second epidemic wave highlights its value for monitoring cases of infection in a clinical context.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Pandemics , Retrospective Studies , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...